Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sibel Demir, ${ }^{\text {a }}$ Muharrem
 Dinçer, ${ }^{\text {a }}$ Ismail Yıldırım ${ }^{\text {b }}$ and Aslihan Kayademir ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Erciyes University, Arts and Sciences Faculty, Department of Chemistry, 3809 Kayseri, Turkey

Correspondence e-mail: sibeld@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.130$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

5-Carboxylato-5-hydroxy-4-(4-methoxybenzoyl)-3-(4-methoxyphenyl)-1,1-dimethyl-4,5-dihydro-1H-pyrazol-1-ium monohydrate

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$, the pyrazolium ring is in an envelope conformation. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form molecular tapes along [001]. In addition, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and a $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interaction link molecules into a three-dimensional network.

Comment

Pyrazoles are one of the important classes of biologically active compounds. Some pyrazoles have been reported to possess significant antimicrobial (Mahajan et al., 1991), antiviral (Baraldi et al., 1998), antifungal (Chen \& Li, 1998), pesticidal (Londershausen, 1996), antihistaminic (Mishra et al., 1998) and antidepressant activities (Bailley et al., 1985). In view of these important properties, we have undertaken the Xray diffaction study of the title compound, (I).

(I)

One benzene ring ($\mathrm{C} 8-\mathrm{C} 13$) and the attached methoxy group (C14 and O5) are essentionally in the same plane (r.m.s. deviation $=0.099 \AA$) are are rotated by $7.63(3)^{\circ}$ from the adjacent carbonyl group plane, while the methoxy substituent (O6 and C21) of the other methoxyphenyl group is rotated by 6.2 (3) Å from the benzene ring (C15-C20). The two benzene rings in the molecule form a dihedral angle of 82.5 (6) \AA. The pyrazole ring in (I) is in an envelope conformation, with atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 2$ and C 3 coplanar (r.m.s. deviation $=0.002 \AA$), and with atom C1 forming the flap, 0.421 (3) \AA from this plane. The bond lengths and angles in the five-membered ring are normal (Allen et al., 1987).

In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form centrosymmetric dimers which are linked by further $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving water molecules to form molecular tapes along [001] (Fig. 2). In addition, several weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction link molecules into a three-dimensional network (Table 2).

Received 25 July 2005
Accepted 29 September 2005
Online 5 October 2005

An ORTEP-3 (Farrugia, 1997) drawing of the title compound, (I), showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Experimental

An equimolar mixture of 4-(4-methoxybenzoyl)-5-(4-methoxyphen-yl)-2,3-dihydrofuran-2,3-dione (0.60 g) [easily obtained from oxalyl dichloride and p, p^{\prime}-dimethoxydibenzoylmethane (Hökelek et al., 2002), and also described by Ziegler et al. (1967)] and $N, N-$ dimethylhydrazine (0.14 ml) was stirred in benzene (30 ml) for 24 h at room temperature. The white precipitate which formed was filtered off and recrystallized from 2-propanol (yield $0.70 \mathrm{~g}, 98 \%$; m.p. $402-403 \mathrm{~K}$). Solvents were dried by refluxing with the appropriate drying agents and distilled before use. All other reagents were purchased from Merck, Fluka, Aldrich and Acros Chemical Co., and used without further purification.

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=416.42$
Monoclinic, $P 2_{1} /{ }^{2}-$
$a=16.532(8) \AA$
$b=16.0283(11) \AA$
$c=7.8717(4) \AA$
$\beta=94.896(4){ }^{\circ}$
$V=2078.3(2) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-2 diffractometer ω scans
19824 measured reflections 4084 independent reflections 2753 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.130$
$S=1.02$
4084 reflections
280 parameters
H atoms treated by a mixture of independent and constrained refinement

$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 18802 reflections
$\theta=1.8-28.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate, colorless
$0.49 \times 0.37 \times 0.18 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.059 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-20 \rightarrow 20 \\
& k=-19 \rightarrow 19 \\
& l=-9 \rightarrow 9
\end{aligned}
$$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0745 P)^{2}\right. \\
&+0.0106 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.71 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0073 (16)

Figure 2
Packing diagram (Spek, 2003), showing intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as dashed lines.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 2-\mathrm{C} 4$	$1.236(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.446(2)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.235(3)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.585(3)$
C11-O5-C14	$116.86(19)$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 2$	$129.3(2)$
$\mathrm{C} 18-\mathrm{O} 6-\mathrm{C} 21$	$117.72(19)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 2$	$119.50(18)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$111.63(16)$	$\mathrm{O} 5-\mathrm{C} 11-\mathrm{C} 12$	$124.7(2)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$114.51(15)$	$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 3$	$121.11(18)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 15$	$120.87(18)$	$\mathrm{O} 6-\mathrm{C} 18-\mathrm{C} 17$	$124.6(2)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$146.42(17)$	$\mathrm{O} 5-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$179.2(2)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 15$	$-179.58(17)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$	$180.0(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{O} 3$	$173.61(18)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 15-\mathrm{C} 20$	$-23.5(3)$
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$-172.4(2)$	$\mathrm{C} 3-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-175.7(2)$
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-170.85(19)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{O} 6$	$178.6(2)$
$\mathrm{C} 14-\mathrm{O} 5-\mathrm{C} 11-\mathrm{C} 10$	$178.7(2)$	$\mathrm{C} 3-\mathrm{C} 15-\mathrm{C} 20-\mathrm{C} 19$	$177.2(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{O} 5$	$179.2(2)$		

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6A . ${ }^{\text {O } 4}$	0.96	2.46	3.316 (3)	148
C5-H5A . O 3	0.96	2.45	3.101 (3)	125
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 5^{\text {i }}$	0.93	2.54	3.465 (3)	172
O7-H7B $\cdots \mathrm{O}^{\text {ii }}$	0.93 (2)	2.01 (2)	2.923 (3)	169 (3)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3^{\text {iii }}$	0.93 (2)	1.90 (2)	2.809 (3)	167 (4)
C5-H5C..O3 ${ }^{\text {iv }}$	0.96	2.59	3.339 (3)	136
$\mathrm{C} 21-\mathrm{H} 21 \mathrm{C} \cdots \mathrm{O}^{\text {v }}$	0.96	2.59	3.321 (3)	134
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.82	2.21	2.788 (2)	128
C14-H14C... $\mathrm{O}^{1}{ }^{\text {i }}$	0.96	2.49	3.142 (3)	125
$\mathrm{C} 21-\mathrm{H} 21 B \cdots \mathrm{Cg} 1^{\text {vi }}$	0.96	3.01	3.9016	154

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y, z-1$; (iv)
$x,-y+\frac{1}{2}, z-\frac{1}{2}$; (v) $x, y, z+1$; (vi) $-x,-y+1,-z+2$.

The H atoms of the water molecule were refined independently with isotropic displacement parameters. Other H atoms were positioned geometrically and treated using a riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$. The displacement parameters of the H atoms were constrained to $U_{\mathrm{iso}}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ or $1.2 U_{\text {eq }}$ (methyl C).

organic papers

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

This study was supported financially by the Research Center of Ondokuz Mayıs University (project No. F-276).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bailley, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., Defelice, A. F. \& Feigenson, M. E. (1985). J. Med. Chem. 28, 256-263.

Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. \& Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.
Chen, H. S. \& Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hökelek, T., Sarıpınar, E., Yıldırım, • I., Akkurt, M. \& Akçamur, Y. (2002). Acta Cryst. E58, o30-o32.
Londershausen, M. (1996). Pestic. Sci. 48, 269-274
Mahajan, R. N., Havaldar, F. H. \& Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-249.
Mishra, P. D., Wahidullah, S. \& Kamat, S. Y. (1998). Indian J. Chem. Sect B, 37 199.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Ziegler, E., Eder, M., Belegratis, C. \& Prewedourakis, E. (1967). Monatsh. Chem. 98, 2249-2251.

[^0]: (C) 2005 International Union of Crystallography

